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Abstract—A solution is presented for high frequency vibrations of anisotropic, elastic plates applicable to
rotated- Y-cuts of quartz with a pair of free edges. The solution is based on an expansion in 2 series of
Ekstein's exact, normal functions for the infinite plate—retaining the first three terms: flexure, thickness-
shear, face-shear.

1, INTRODUCTION
There is no difficulty, today, in obtaining exact solutions of the three-dimensional, linear
equations of elasticity for problems of vibrations of infinite plates with a pair of free faces. For
the isotropic plate, this was first accomplished by Rayleigh in 1889(1]; and Ekstein, in 1945[2],
gave a solution for an anistropic plate applicable to the technologically important rotated- Y-
cuts of quartz. Although many years passed before the resulting frequency equations were
analyzed in detail, their properties are now well understood.

At a free edge of a plate with free faces, each of the infinity of modes of the infinite plate
reflects, except for a few special cases, as an infinity of modes; and therein lies the difficulty
with finding solutions for plates with free faces and even only a single free edge or pair of
parallel free edges. The classical method of overcoming the difficulty has been the employment
of approximate, two-dimensional equations of motion which already satisfy, at least ap-
proximately, the conditions of free faces so that the conditions for free edges are analogous to
those for free faces in the three-dimensional case. A solution of the approximate equations for
the infinite plate contains, usually, only a small number of modes approximating the cor-
responding ones of the infinity of modes from the three-dimensional equations. Each of the
approximate modes reflects, at a free edge, at most as the total, small number; so that the
frequency equation is finite. The approximate equations are generally obtained, especially in the
case of the high frequency range, by expanding the three-dimensional displacements or strains
or stresses in series of powers or polynomials or trigonometric functions of the thickness
coordinate of the plate, followed by an averaging across the thickness which eliminates one of
the three independent spatial variables from the equations of motion. Thus, all variations across
the thickness, throughout the plate, are assumed to be of simple form and then are averaged.
An alternative is to expand in a series of the exact functions, obtained from the exact solution
of the three-dimensional equations for the infinite plate, and postpone all approximations to the
boundary conditions at the edges. At that stage, only a small number of the exact functions may be
retained. Then averaging over the thickness is performed only at the edges as the last step. This
procedure was carried out in detail in a previous paper (3], retaining only the first two exact modes
(flexure and thickness-shear) of the infinite plate. Although that application was to the AT-cut of
quartz, the coupling with the face-shear mode was omitted in order to compare with an earlier
approximation. The coupling with the face-shear is included in the present application.

2. EKSTEIN FUNCTIONS
We consider, first, vibrations of an infinite plate. In an x,, i = 1,2,3 rectangular coordinate
system, the plate is bounded by free surfaces x, =+ h and vibrates in modes of motion with

1This investigation was supported by the U.S. Army Research Office under a contract, with Princeton University,
supervised by Professor P.C.Y. Lee.
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straight crests along x;. Anticipating that there will be n modes of propagation(n =1,2,..., %),
along the plate, each of which contains three wave lengths across the thickness, we may write,
for the components of displacement essentially antisymmetric with respect to the middle of the
plate:
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= 3
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With displacements of the form (1), the equations of motion for rotated- Y-cuts of quartz[4]
reduce to

Cialty 1 + Coslhr 22 + pwity +(Cra+ Coghtz 2+ (Cra+ Csgtz 13 =0,

(12t oty 12+ Coglha 1y + Cralta 22 + PPty + Csglty 1 + Coultz 2 =0,

(Cra+ Csedliy 12+ Csslhzay + Coallaza + Csshly 1y + Caally 2 + ity = 0. @

Upon substituting (1) in (2), we find

(En€2+ 7 — QYA + (14 E)EiinBin + (E1a+ E30)&sTinCin =0,
(1 + 6)TinAin + (&2 + Coaiitn — ) By + (Csei? + Eaita)Cin = 0,

(Cra+ Ese)EntinAin + (EssE2 + Coaiin) Bin + (Ess&2 + Euiitn — W)Cip =0, 3

where

& =2807, i =2mhIT, G = CoolCisr P = 4HPpe?| e, @

£, and 4, are the ratios of the thickness of the plate to the half wave lengths along and through
the plate, respectively; () is the ratio of the frequency to the cut-off frequency of the
fundamental thickness-shear mode. From (3),

Eubl + it ~ O _ 1+épn (E1a+ Esertim
1+& £+ ipiiia — Esebal+ Cuilin  |=0
(€14t Cse)énin Cssba’+ Cutitn skl + Cuuiiin — (1 5

and B,/A,, = B, say, and Ci/Aix = ¥, S8Y, 50 that

o (02— &8~ TN Cseid + Eutita) + (1 + E) (6w + Es)El T,
Bin = ﬁ'ﬁ'yr)‘], (6)

Eniim[(1 + E)(Eseby” + Coutiin) — (Gra+ Eseh &y + Enafjin — O

(2 = 6182 — T2 = £2 - Enith) ~ (1 + 8 E2 7
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High frequency vibrations of quartz plates
The components of traction on x, = + h are given by
Ty = Cseltys + Cosltz, + Uy ),

Ty = calty + Cnalia 2 + Coully 2,

Tos = Craltyy + Coably s+ Casliz 2,

whence, on x; = * A,

» 3
Ty = 2 z Ay €OS £,x; COS M,
Apttin sin £ sin ni,h,
Auvi sin &5 sin gk,

where
Ain = Co6Min + Cos€nBin + Cs6€n¥in

Bin = Cnida + C2MinBin + CoabinYins

Vin = Crabs + CuMinBin + CaaMinVine

Hence, for each n, the surfaces x, = + h are free of traction if
AjnAin COS Bkt + Agahan COS Mokt + Asphs, €08 M3, =0,
Ajftin SIn Nyaht + Agapizg Sin n2ah + Asaitsn sin 3k =0,
A1y Sin ik + Azavy, Sin mapht + A, sin 3k =0,

from which the Ekstein dispersion relation is
E = Aia(i2a¥3n — B3nb24) €OS Miah Si0 720 sin M3,k

+ A2a(M3nV1n = H1a¥sa) SN Muh COS N2,k sin a3k

+ Asa(1aVan = B2nV1n) SIN 71,8 SIN Mok COS Myh =0

and the Ekstein displacement components are

3
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$an = (Ran¥in = f1aVsn) sin nlnh/(”’ZnVJu = W3nb2a) sin lenh,
(13)
{331 = (#tn"h ”“In”!») sin ﬂlnkf(ﬂhv}n - “3:!!’2:!) sin 773»"-
The Ekstein dispersion relation (11) has been studied in some detail in 5, 6].
3. FREQUENCIESOF APLATE OF FINITE LENGTH

The components of traction on planes x; = constant are

Ty = cplyy + Craliz2 + Cralts g,
Ti2 = Cseltys + Ceallta + ity 2), (14

T3 = Cssits ) + Cselzy + Uy 2).

From (12) and (14),

8
w

Ty=- & Dplintin sin £,x, SiN 730X,
L] ?

o 3

T12 = z 2} Dn(l'nAin cos gnxl COS N;pXa, (15)

n=jj=

« 3
Ty= 2 Z D\ finbin €OS £,X) COS 1inXs,

n=l]im

where

Gin = Ciéa + C12MinBin + C14MinYins
(16)

bin = Cs6Min + C56€aBin + Cs5€a¥in:

We now restrict n to the first three branches of Ekstein’s dispersion relation (11), i.e. the
flexure, thickness-shear and face-shear branches, and set the resultant force and couple on
x; = %[, per unit length along x,, equal to zero. Thus, on x; =/,

A A &
f x2 Ty dx; =0, fh Tipdx; =0, ]a Ti3dx; =0, an
A - -

from which

3
> DLy, sin&l =0,

a=]

a2

D,L,,cos £l =0, (18)

\ad

D,Ls, cos &l =0,
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where

3
L, Z Linin 2 (SIN ok — Minh €OS Minh),

é LinhinMi' SIN Minh, (19)

Z D SIN Minh.

Upon eliminating the three D, from (18), we obtain, finally, the equation governing the
frequency spectrum of the plate of length 2/ in the x,-direction, thickness 2k in the x,-direction
and of infinite width in the x;-direction:

F = L,{(LyLs; ~ L3;Ly3) sin &1 cos &l cos &l
+ L;z(Lz;Lg; « Ea3L4) cos fgf sin fgf Cos f;i

+ Ln(Lz]L;z - Lg]Lzz) Cos §|l Ccos 621 sin f;l =0. (20)

4, SOLUTION OF EQUATIONS
The equations to be solved are (5) and (11), for the Ekstein branches, and then (20) for the
frequency spectrum. As both & and 7, appear in both (5) and (11) and, since (11) is
transcendental, the two equations have to be solved simultaneously by successive ap-
proximations; and this must be done separately for each of the three branches for a given
frequency ratio (). Trial values of the £, for the flexure and thickness-shear branches were
found from an approximate equation obtained previously[7]:

KE+(1+0)0%E + QA - 1) =0, n=12, @n
where
k*= 712, g=xlcellcn—chicn). 22)
For the trial values of £, for the face-shear branch, the approximation
& =0Yey @)

was employed. -

With each of the three trial values of £, and a chosen frequency ratio {2, the three roots 73,
of (5) were obtained and, along with their £,, employed to calculate a trial value of E from (11).
Then the next approximation to ¢ was computed from (5) and (11) by the secant method and
the process, beginning with (5), was repeated until either E was less than a certain small
quantity or passed through zero. In the latter case, the final value of £ was computed by linear
interpolation and the associated values of the 7, were finally obtained from (5). Thus, three £
and three 7, for each of them were computed for the given frequency. The twelve quantities
were then employed to compute the coefficients in (20) and to supply the &h parts of the
arguments &/ = (&Ah){/h). The remaining part, I/, of the arguments was then increased, from a
starting value, in small, equal increments until F passed through zero. Linear interpolation then
gave an abscissa //h on a branch of the frequency spectrum for the chosen frequency. //h was
then increased in successive, small increments until the next branch was encountered, as
indicated by F again passing through zero. After covering the range of I/ desired, the next
frequency was chosen and the entire procedure was repeated, beginning with trial values of the
&, from (21) and (23).
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Fig. 1. Frequency spectrum of Flexure (F), Thickness-Shear (TS) and Face-Shear (FS) Modes of Vibration
of AT-Cut Quartz Plates.

It should be noted that, from (5), in the range of the present application, the three #;, for the
flexure branch are imaginary; the three 7, for the thickness-shear branch are real; while, for
the face-shear branch, #,; and 43, are imaginary while 7y, is real. Thus, the real form of (11) is
different for each of the first three branches of Ekstein’s equation.

In the function F, in (20), £, and & are real but & is imaginary for O <1, zero for 1 = 1 and
real for {} > 1; so that F also takes three different real forms depending, in this case, on the
frequency. It should be noted that, although sin &/ is zero when £ = 1, the entire second term
in (20) does not then disappear. This is because of the presence of & in the denominator of L;,.

The results of a typical computation are shown in Fig. 1 for the AT-cut of quartz for which,
as calculated from Bechmann’s constants[8]:

€11 =2.98969 &, =~0.284719

Cnp=447269  Cy=~0.125973

Cu=133083 &y =~0.196478

Gss=237159 &4 =0.0873254.
The ranges and intervals for the computation were

{/h: 20(0.1)30
Q: 0.97(0.0025)1(0.001)1.03.

About 150 min of computing time were required on a TRS-80 microcomputer to solve for the
approximately 400 points on which Fig. 1 is based. The figure illustrates how the coupling of the
thickness-shear modes with the face-shear modes can disturb the flat, thickness-shear
frequency terraces as, for example, occurs in 22.5 <//h <24.1 and in 25.7 < l/h <27.3 but not in
U1<h<25.7.
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